A Benefit of Failed Pregnancy?

Scientists find a common genetic variant in mothers that decreases the chance of successful pregnancy.

ruth williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Mis-segregating chromosomesSTEFANO SANTAGUIDA, ANGELIKA AMON, MITAneuploidy—the incorrect number of chromosomes in a cell—is extremely common in early embryos and is the primary reason for pregnancy loss. A report published today (April 9) in Science reveals that one cause of this aneuploidy—aberrant cell divisions in the embryo—is linked to a genetic mutation carried by the mother. Astonishingly, this mutation turns out to be very common and appears to have been under positive selection during human evolution.

“There’s this genetic variant that they’ve been able to identify with very nice evidence for positive selection, but that has a fitness consequence, a fecundity consequence . . . that decreases the viability of an embryo,” said evolutionary geneticist Ed Green of the University of California, Santa Cruz, who was not involved in the work. “It flies in the face of what we think of in terms of positive Darwinian selection and demands an explanation.”

Approximately 75 percent of human embryos exhibit some form of aneuploidy and most of those will result in a failed pregnancy. Indeed, fewer than 30 percent of all conceptions are thought to result in an actual pregnancy. The likelihood of aneuploidy in a woman’s eggs—so called meiotic-origin aneuploidy—increases with age, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours