A Blood-based Biomarker for Suicide?

Epigenetic and genetic changes in the SKA2 gene are correlated with suicidal behaviors, researchers show.

Written byJyoti Madhusoodanan
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

FLICKR, US NAVYA blood test that reveals epigenetic and gene-expression changes in one gene, SKA2, could help identify individuals at risk of suicide or suicidal behaviors, according to a study published yesterday (July 30) in The American Journal of Psychiatry.

Led by Zachary Kaminsky of the Johns Hopkins University School of Medicine in Baltimore, Maryland, the study began with a genome-wide scan for methylation changes in neurons and glial cells in post-mortem brains to identify genes associated with suicide. The search linked epigenetic and genetic changes in a single nucleotide polymorphism (SNP), rs7208505, within the SKA2 gene to a higher probability of suicidal ideation. SKA2 gene expression was significantly lower in suicide decedents, an effect linked to variations in this SNP.

Changes in SKA2 expression were also linked to suicidal behaviors in blood tests on three live cohorts. An assessment of stress—as measured by salivary cortisol levels—suggested that the gene may act to suppress cortisol and mediate stress responses. The correlation of SKA2 with anxiety ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies