A Root Cause of Parkinson’s

Misfolded α-synuclein proteins promote the spread of Parkinson’s pathology in mouse brains.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Alpha-synuclein aggregates (red) in the mouse brain.Kelvin LukAggregates of misfolded α-synuclein proteins are not just hallmarks of Parkinson’s disease, they actually initiate pathology, according to a report out today (November 15) in Science. A single injection of the aggregated proteins, known as Lewy bodies, into the brains of healthy mice caused the propagation of such aggregates across networks of brain cells as well as the destruction of dopaminergic neurons, a key feature of Parkinson’s disease.

“There had been this [question] with the Lewy bodies as to whether they were sort of tomb-stone evidence of the disease occurring, or were more involved in the process,” said Gary Miller, a professor of neurology at Emory University in Atlanta, Georgia, who was not involved in the study. “What this shows is that they are clearly part of the process.”

Parkinson’s disease is one of a number of neurodegenerative conditions, including Alzheimer’s and prion diseases, that are characterized by the accumulation of protein aggregates in the brain, Miller explained. In prion diseases, misfolded proteins recruit and misfold more of the same protein, which in turn recruit and misfold additional proteins, and so on. “People suspected something similar might be occurring with α-synuclein in Parkinson’s,” ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies