A Single Mutation in Zika Led to Devastating Effects

One amino acid change within a viral structural protein makes the difference between mild cases of brain damage and severe microcephaly in mice.

Written byAnna Azvolinsky
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ISTOCK, ubrxOne mutation in the Zika virus is responsible for catastrophic consequences in its hosts. A sequence change resulting in one amino acid substitution can convert an ancestral Zika strain that causes only mild microcephaly into one that causes severe fetal microcephaly in mouse embryos, according to a study published today (September 27) in Science.

“It was not clear previously how Zika virus evolved from a relatively benign virus to a virulent pathogen. This work provided new insight into this question,” Pingwei Li, who studies innate immunity and structural biology at Texas A&M University, writes in an email to The Scientist.

“I like this study quite a bit,” says Alysson Muotri, whose lab at the University of California, San Diego, had previously shown that the Brazilian strain of Zika can cause birth defects in mouse embryos and human brain organoids. “This is the first use of forward and reverse genetics to demonstrate that a specific point mutation in the Zika virus genome can lead to dramatic brain defects in vivo.”

A type of flavivirus, Zika was relatively rare and known ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH