A Systematic Approach to Finding Unannotated Proteins

A study suggests that there is more to the eukaryotic genome than was previously suspected.

Written byKatarina Zimmer
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

UNEARTHED TREASURE: Confocal microscopy image of a previously unannotated mitochondrial protein, altMiD51 (green), alongside mitochondria (red) ANNIE ROY

THE PAPER S. Samandi et al., “Deep transcriptome annotation enables the discovery and functional characterization of cryptic small proteins,” eLife, 6:e27860, 2017. HIDDEN GEMS For many years, scientists believed that each eukaryotic gene encoded just one protein and its isoforms, and researchers annotated genomes accordingly. But recent research has shown that individual genes can encode multiple different proteins, and that plenty of proteins arise from regions of the genome that are considered noncoding. Xavier Roucou, a biochemist at the University of Sherbrooke in Quebec, Canada, decided to take a systematic approach to annotating these undocumented proteins. TREASURE HUNT To detect regions of the genome that might encode these proteins—so-called “alternative open reading frames” (altORFs)—Roucou and colleagues scanned nine eukaryotic genomes, including the human genome, for ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • katya katarina zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field of science and wanted to write about all of them. Following an internship with The Scientist in 2017, she’s been happily freelancing for a number of publications, covering everything from climate change to oncology. Katarina is a news correspondent for The Scientist and contributes occasional features to the magazine. Find her on Twitter @katarinazimmer and read her work on her website.

    View Full Profile

Published In

March 2018

The Transgender Brain

Researchers seek clues to the origins of gender dysphoria

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH