Action at a Distance, Circa Early 1950s

Neuroscientist Rita Levi-Montalcini began her Nobel Prize–winning work in a makeshift laboratory in Italy during the Second World War.

Written byDiana Kwon
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, GREMLIN

What do nerves need in order to grow? That question first caught Rita Levi-Montalcini’s attention in the 1930s, when she came across a recent paper by embryologist Viktor Hamburger. After observing that clipping the wing bud off chicken embryos stunted the growth of spinal nerves and ganglia on the side of the body with the excision, Hamburger reported that signals from the limb drove the growth and differentiation of immature cells in the central nervous system. Levi-Montalcini was intrigued. But after repeating the embryo experiments and finding that the chick’s nerve cells continued to develop after amputation and died later—just before reaching their target tissue—she came to a different conclusion. Rather than failing to initiate nerve growth, she hypothesized, the animals were unable to sustain the growing cells, causing a degenerative process that limited their proliferation.

Levi-Montalcini began these experiments at the University of Turin in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile

Published In

December 2020

Dream Engineers

Manipulating the sleeping brain to understand it

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH