Activation of the Immune System Underlies Cardiac Cell Therapies

A study in mice reveals that stem cell transplants, currently in clinical trials, may not actually require the cells.

Written byRuth Williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: In a mouse heart, injected stem cells (dashed lines showing injection site) recruit inflammatory (red) and non-inflammatory, healing (green) macrophages to elicit wound repair.
JEFFERY MOLKENTIN

Injections of stem cells—either a patient’s own or from a donor—into the hearts of people with cardiac conditions has been shown in some cases to improve heart function. How the cells help has been a mystery. A paper in Nature today (November 27) shows that activation of an innate immune response can explain, and even recapitulate, the beneficial effects of stem cell transplants in the hearts of mice.

The findings suggest stem cells may not be required to boost cardiac repair, but some researchers argue that, by finally providing a mechanistic explanation, the study supports the use of cell therapy.

“This work is paradigm-shifting because it demonstrates a mechanism to explain a perplexing phenomenon that has intrigued cardiologists as a result of decades of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH