Adult-Born Neurons Strengthen Memories While Mice Sleep

The activation of young brain cells in adult mice is necessary not just for forming memories, but consolidating them during rapid eye movement sleep, a study shows.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: Newborn neurons in a mouse hippocampus
© ISTOCK.COM, IBREAKSTOCK

In the hippocampus of the adult mouse brain, newly formed cells that become activated by a learning experience are later reactivated in the REM phase of sleep, according to a study in Neuron today (June 4). The authors show this reactivation is necessary for fortifying the encoding of the memory.

“It is a very cool paper,” writes neuroscientist Sheena Josselyn of the University of Toronto in an email to The Scientist. “This is the first study to causally link new neurons to sleep-dependent memory consolidation. I am sure it will have a broad impact on scientists studying memory, sleep as well as those interested in adult neurogenesis,” she says. Josselyn was not involved in the study.

In the adult mammalian brain, most cells do not replicate. But, deep in the center of the organ, in a particular region of the hippocampus ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio 
Zymo Research

Zymo Research Launches Microbiome Grant to Support Innovation in Microbial Sciences