An Epigenetic Aging Clock for Mice

Scientists predict rodents’ ages by assessing DNA methylation markers in various tissues.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

MAX PIXEL

By examining methylation markers in the genome, scientists can accurately predict the ages of mice and pinpoint changes that perturb the epigenetic clock, according to a study published last week (April 11) in Genome Biology.

In 2013, Steve Horvath of the University of California, Los Angeles, reported that the age of a variety of human tissues could be predicted by assessing DNA methylation. A few years later, Horvath and colleagues discovered a link been mortality and methylation patterns in the human genome.

Now, researchers at the European Molecular Biology Laboratory’s European Bioinformatics Institute (EMBL-EBI) and the Babraham Institute, both in the U.K., have developed an epigenetic clock for mice that, like Horvath’s, determines biological age by assessing methylation changes in various tissues, including brain, heart, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Diana Kwon

    Diana is a freelance science journalist who covers the life sciences, health, and academic life.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer