Antibiotic Bouncer

Contrary to previous assumptions that macrolide antibiotics completely block the exit tunnel of ribosomes, new evidence shows that some peptides are allowed to pass.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

LEAKY PLUG: Binding of the antibiotic erythromycin (orange) during protein translation stops the ribosome (gray) from producing most proteins, except those with a particular N-terminal sequence.COURTESY OF ALEXANDER MANKIN

The paper K. Kannan et al., “Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel,” Cell, 151:508-20, 2012. The finding Macrolides are widely used antibiotics that are thought to act by binding to and plugging up the ribosome, thereby halting protein translation. But “several reports in the past didn’t fit too snugly in this model,” says Alexander Mankin of the University of Illinois at Chicago. He and his colleagues retested the assumption by treating E. coli with high doses of the macrolide erythromycin and found that some proteins were still translated. The selectivity Mankin’s group found that translation was not halted completely, but rather declined by about 94 percent, and that the successfully translated products were specific to several types of protein, including a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH