Antibiotic-Linked Antibody Attacks Cancer’s Sinister Neighbor Cells

An unexpected and unprecedented finding may lead to improved cancer therapies.

Written byRoni Dengler, PhD
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Cancer cells are aggressive. They divide and multiply, create their own blood supply, invade healthy tissue, and resist death. Even when targeted therapies efficiently kill these cells, neighboring cells are often left behind. These bystander cells can be malicious. If left intact, they can lead to tumor regrowth, and many therapies that act like snipers against cancer cells leave bystander cells unscathed.

Now K.C. Nicolaou, a synthetic chemist at Rice University, and his colleagues have discovered that an antibiotic-linked antibody, known as an antibody-drug conjugate (ADC), kills bystander cells as efficiently as it kills targeted cancer cells.

“The bystander effect could be the key to opening new avenues for more effective anticancer ADCs that may improve targeted cancer therapies,” Nicolaou said in an email.

ADCs are gaining momentum against cancer. More than 80 ADCs are advancing through clinical trials, and nearly a dozen have been approved as therapies. One of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies