Archaea CRISPR Systems Grab DNA Memories During Interspecies Mating

When different archaeal species mate, their CRISPR systems interact in ways that may influence their evolution.

Written byCarolyn Wilke
| 2 min read
archaea fused together with cytoplasmic bridges

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: Scanning electron micrographs show mating archaea fused together with cytoplasmic bridges.
REPRINTED WITH PERMISSION FROM I. ROSENSHINE ET AL., SCIENCE, 245:1387 (1989)

The paper
I. Turgeman-Grott et al., “Pervasive acquisition of CRISPR memory driven by inter-species mating of archaea can limit gene transfer and influence speciation,” Nat Microbiol, 4:177–86, 2019.

Naturally occurring CRISPR-Cas systems in bacteria and archaea carry DNA memories of invasions by viruses or plasmids. These DNA sequences, called spacers, instruct Cas proteins to destroy the intruders should they enter the cell again. Curiously, several species of halophilic, or salt-loving, archaea isolated from water near Israel’s Mediterranean coast possess spacers matching the DNA of closely related species, report Tel Aviv University’s Uri Gophna and colleagues.

Archaea can mate by latching together with cytoplasmic bridges and exposing their genomes to each other to be recombined. To test whether archaea pick up spacers during mating, the researchers let two species of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

March 2019

Going Under

Dissecting the effects of anesthetics

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies