Artificial Intelligence Mimics Navigation Cells in the Brain

An algorithm trained to move through a virtual environment spontaneously generated patterns of activity found in so-called grid neurons.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ISTOCK, MATJAZ SLANIC

A computer program can learn to navigate through space and spontaneously mimics the electrical activity of grid cells, neurons that help animals navigate their environments, according to a study published yesterday (May 9) in Nature.

“This paper came out of the blue, like a shot, and it’s very exciting,” Edvard Moser, a neuroscientist at the Kavli Institute for Systems Neuroscience in Norway who was not involved in the work, tells Nature in an accompanying news story. “It is striking that the computer model, coming from a totally different perspective, ended up with the grid pattern we know from biology.” Moser shared a Nobel Prize for the discovery of grid cells with neuroscientists May-Britt Moser and John O’Keefe in 2014.

When scientists trained an artificial neural ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Diana Kwon

    Diana is a freelance science journalist who covers the life sciences, health, and academic life.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

The Scientist Placeholder Image

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo
Chemidoc

ChemiDoc Go Imaging System ​

Bio-Rad
The Scientist Placeholder Image

Evotec Announces Key Progress in Neuroscience Collaboration with Bristol Myers Squibb