Modern cancer medicine is hampered by two big challenges—detecting cancers when they are small and offering cancer patients personalized, dynamic cancer care. To find solutions, several academic labs and biotech firms are turning to artificial intelligence, working to develop machine-learning algorithms that could help decipher weak signals in the blood that can identify cancers at an early stage and indicate whether a cancer is responding to treatment in real time.
“You have to find this needle in a haystack . . . this very weak signal amongst all of the cacophony of everything else happening in the body,” says Dave Issadore, a bioengineer at the University of Pennsylvania and founder of Chip Diagnostics, which is developing a machine-learning method to diagnose disease by sequencing extracellular vesicles’ cargo.
So far, machine-learning algorithms designed to detect minute quantities of tumor DNA in a blood sample—the goal of so-called liquid biopsies—have performed well ...