Artificial Mouse Embryo Made in a Laboratory

The embryo, grown in a dish from several types of stem cells, went through gastrulation, a significant stage in development.

Written bySukanya Charuchandra
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

ABOVE: Synthetic embryo-like structure made of three stem cell types in yellow, pink, and green
ZERNICKA-GOETZ LAB, UNIVERSITY OF CAMBRIDGE

Researchers have used three types of stem cells to create a mouse embryo in a dish, according to research published in Nature Cell Biology yesterday (July 23). The cultured embryos transformed into a multilayered structure, which helps establish subsequent cell types and axes of the body. When the mixture of cells attained the appropriate density, they independently self-organized into a clump.

“Our artificial embryos underwent the most important event in life in the culture dish,” coauthor Magdalena Zernicka-Goetz, a professor at the University of Cambridge in the U.K., says in a statement. “They are now extremely close to real embryos.” For further growth, the artificial embryos would need to be implanted into a real or synthetic womb.

Using their lab-made embryo, the researchers can better understand how the three types of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
An image of a DNA sequencing spectrum with a radial blur filter applied.

A Comprehensive Guide to Next-Generation Sequencing

Integra Logo
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel