Artificially Intelligent Tools Capture Animal Movement

Algorithms for motion capture help neuroscientists dig into the question of how the brain produces behavior.

Written byCarolyn Wilke
| 4 min read
fruit fly

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: A fruit fly tracked using the LEAP tool
MODIFIED FROM MURTHY AND SHAEVITZ LABS, PRINCETON UNIVERSITY

It takes an average of 17 minutes for a fruit fly couple to move from meeting to mating, says Talmo Pereira, a PhD student studying neuroscience in Joshua Shaevitz’s and Mala Murthy’s labs at Princeton University. The encounter is marked by “lots of complex stages, arguably more complex than human courtship,” he says. A male and a female Drosophila melanogaster first size each other up through an exchange of pheromones. If they’re compatible, the male chases the female down and woos her by “singing” with a wing that he vibrates in particular patterns to form the notes of his ballad. Then the partners dance, running and circling each other. Finally, the male attempts to copulate and the female accepts or rejects.

Pereira is studying how the courtship song and dance are represented in the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

May 2019 The Scientist Issue
May 2019

AI Tackles Biology

How machine learning will revolutionize science and medicine.

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH