Bacteria’s Role in Bowel Cancer

The development of serrated polyps depends on bacteria present in the gut, a mouse study shows.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Clostridium botulinumWIKIMEDIA, CDCChanges to the microbial composition of the gut can drastically alter the development of certain bowel tumors, according to a study published today (March 3) in The Journal of Experimental Medicine. Researchers from New York City’s Icahn School of Medicine at Mount Sinai worked with a mouse model that develops tumors called serrated polyps in the cecum, the part of the large intestine proximal to the colon. The polyps arise in part because the mice are genetically engineered, via a pair of transgenes, to overexpress the growth factor HB-EGF. But genetics, the researchers found, are not the whole story. Their work revealed that bacteria are also required for tumor development—the ceca of transgenic mice raised on an antibiotic cocktail did not form polyps.

“We were able to show that tumor formation was dependent on the microbiota present in that particular area of the intestine,” said Sergio Lira, who led the study. “In the presence of antibiotics, or of a slightly different cecum microbiota, the tumors did not develop.”

“This study adds to our knowledge of links between the gut microbiome and colon cancer, where causation is now established in several animal models and correlations are intriguing in humans (although causation in humans are not yet proven),” Rob Knight, a microbial ecologist at the University of Colorado, Boulder, who was not involved in the work, told The Scientist in an e-mail.

“There’s a growing body of information that constituents in the microbiota play a role in chronic inflammation and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley P. Taylor

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours