© GEORGE RETSECK
One of the main goals of cell encapsulation techniques is to protect therapeutically important transplanted cell populations from the host’s immune system and thus prolong their viability and effects. But this increasingly popular approach has also led to single-cell encapsulation techniques aimed at basic research applications. The idea is that individual cells in protective yet permeable shells are easier to handle, can better withstand a variety of procedures, and can be stimulated and analyzed in three dimensions, explains Shinji Sakai of Osaka University in Japan.
A recently described method for encapsulating individual animal cells involves coating them with alternating layers of positively and negatively charged polymers (Langmuir, 26:5670–78, 2010). However, says Sakai, few charged polymers are compatible with cell viability, and the resulting shells tend ...