Blood-Based Epigenetic Screen Tests for Diabetes Complications

Researchers could accurately detect life-threatening vascular complications in type 2 diabetes patients by analyzing hydroxymethylated cytosines in freely circulating DNA.

Written byKatarina Zimmer
| 4 min read
diabetes complications type 2 biomarker blood test screen hydroxymethylation epigenetics cytosine

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, FLY_DRAGONFLY

Chronically high blood sugar levels in type 2 diabetes can damage tissues throughout the body, such as the nerves, eyes, or kidneys. These vascular complications are a leading cause of death for patients, and scientists have been working toward designing a noninvasive, simple means to detect them early on in the course of disease progression. Typically, clinicians rely on a series of separate tests—from urine screens and ultrasounds to eye examinations—to estimate the risk of developing complications. A blood test based on a biomarker associated with a range of such issues would save time for patients and be more convenient for clinicians.

In the latest development toward that goal, researchers have created a blood test that can predict the likelihood of a diabetes patient experiencing a vascular complication. The signals of present problems came from distinct patterns of epigenetic modifications known as hydroxymethylations on freely circulating ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • katya katarina zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field of science and wanted to write about all of them. Following an internship with The Scientist in 2017, she’s been happily freelancing for a number of publications, covering everything from climate change to oncology. Katarina is a news correspondent for The Scientist and contributes occasional features to the magazine. Find her on Twitter @katarinazimmer and read her work on her website.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies