Blood Spots Are Epigenetic Time Capsules

Researchers show that blood spotted onto Guthrie cards, usually at birth, can be a high quality source of methylated DNA for long-term epigenetic studies.

Written bySabrina Richards
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Blood samples spotted onto Guthrie cards at birth could prove a valuable source of genomic DNA for epigenetic studies. They could potentially allow scientists to peer into the history of a patient's epigenome and reveal which epigenetic patterns helped cause disease, and which resulted from disease, researchers at the University of London report in tomorrow’s (August 23) online issue of Genome Research.

“If validated, this could indeed add a much needed time scale to correlation studies of methylation and disease,” L. H. Lumey, a medical epidemiologist at Columbia University, who did not participate in the research, wrote in an email.

Research into the genetic basis of complex diseases has demonstrated that a fair portion of heritability can’t be accounted for by genetic sequence alone, explained first author Vardhman Rakyan, a senior lecturer at the University of London. “Genetics contributes only about 15 to 20 percent of heritability of diabetes. Clearly ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH