Brain Cells Behind Overeating

Scientists have defined mouse neurons responsible for excessive food consumption at an unprecedented level of detail.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Lateral hypothalamus neurons (green) project to the ventral tegmental area in the mouse brainMIT, EDWARD NIEH, KARA PREBREY, AND KAY TYETwo independent research teams have defined populations of neurons in the hypothalamus that are responsible for food-as-reward stimulation, but are likely not necessary to spur eating for survival. Both groups published their findings today (January 29) in Cell.

“These are big papers that start to define the complexity and heterogeneity of [the hypothalamus] and the specific sets of neurons that can produce dramatic behavioral results,” said Ralph DiLeone, a neurobiologist at Yale University who was not involved in the work.

Using optogenetics, neuroscientist Garret Stuber at the University of North Carolina, Chapel Hill, and his colleagues found that activating GABAergic neurons within the lateral hypothalamus (LH) led mice to feed more frequently, while inhibiting the activity of these neurons motivated the mice to not eat in excess. These neurons were distinct from other neuronal populations in the LH previously implicated in eating and other reward-related behaviors. When these neurons were genetically ablated, the mice were less motivated to obtain a liquid calorie reward. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies