COURTESY OF ED BOYDEN, CRAIG FOREST AND SUHASA KODANDARAMAIAH
Dissecting how the brain works is tricky. Genetic engineering techniques allow researchers to tag neurons of interest with fluorescent markers that glow upon neural activation, but capturing those brain areas in action, both as distinct neural circuits and at the resolution of single cells, can be hard. Studying the neural activity of Drosophila, for example, involves microsurgery to remove the top of a fly’s head to get a clear view of its brain, a task so delicate that only practiced technicians with steady hands are able to complete it successfully. To monitor brain activity in mice and other animals, neuroscientists often rely on a well-established technique called patch clamping, which can ignite career-questioning frustration, as electrical noise spoils seemingly good data and cells begin to ...