Brush Up: Quorum Sensing in Bacteria and Beyond

Microbes communicate with quorum sensing to coordinate their behavior in response to how many neighbors they have.

Written byDeanna MacNeil, PhD
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

What Is Quorum Sensing?
Individual bacteria use quorum sensing to detect and respond to changes in cell density as a coordinated group. For example, the first reported evidence of quorum sensing was in two marine bacterial species that emit light in response to high cell density, which is responsible for bioluminescence in various marine hosts. Researchers have identified many species of bacteria that interrelate gene regulation with their neighbors to control a variety of processes, including symbiosis, virulence, antibiotic resistance, and biofilm formation.1

How Does Quorum Sensing Work?Quorum sensing is mediated by bacteria producing, releasing, and detecting extracellular signaling molecules called autoinducers. Typically, when individual bacteria divide, they produce and release autoinducers. When cell density is low, these molecules diffuse in the environment, and bacteria regulate gene expression independently. Autoinducer levels increase as bacteria continue to divide, and when the extracellular concentration of these signaling molecules reaches a certain threshold, individual ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Deanna MacNeil, PhD headshot

    Deanna earned their PhD from McGill University in 2020, studying the cellular biology of aging and cancer. In addition to a passion for telomere research, Deanna has a multidisciplinary academic background in biochemistry and a professional background in medical writing, specializing in instructional design and gamification for scientific knowledge translation. They first joined The Scientist's Creative Services team part time as an intern and then full time as an assistant science editor. Deanna is currently an associate science editor, applying their science communication enthusiasm and SEO skillset across a range of written and multimedia pieces, including supervising content creation and editing of The Scientist's Brush Up Summaries.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel