Building Better Reagents

Facing problems of inconsistent, time-consuming, and costly antibody production, some researchers are turning to alternatives to target specific proteins of interest, in the lab and in the clinic.

Written byJane McLeod and Paul Ko Ferrigno
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

© STEVE GRAEPELAntibodies are large proteins, weighing in at about 150 kDa. Four polypeptides—two heavy chains and two light chains—are linked by disulfide bonds to form a Y-shape molecule. The amino acid sequences at tips of the short ends of the Y vary greatly between antibodies produced by different B cells, while the rest of the molecule is relatively consistent. The variable portion of the antibody binds in a specific region (epitope) on a foreign protein (antigen) and signals the immune system to the presence of an invader.

To produce antibodies, researchers immunize lab animal with protein of interest. The animal’s B cells then generate antibodies that bind to different regions, or epitopes, on the protein. The diverse antibodies that bind to the target protein can then be isolated and purified for use. Because these bind numerous epitopes, they are called polyclonal antibodies.

© STEVE GRAEPEL

Alternatively, the immunized animals’ B cells can be isolated from the spleen or lymph nodes and fused with a tumor cell to generate immortal hybridoma lines. Those cell lines that produce the desired antibody against a specific epitope of the target protein can then be ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series