Bursting Cancer’s Bubble

Scientists make oxygen-filled microbubbles designed to increase tumor sensitivity to radiation.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

TINY BUBBLES: Oxygen-filled bubbles—3 μm in diameter—are delivered to a tumor via blood vessels. Sonication at the site of the tumor causes the bubbles to explode, releasing oxygen. Enriching tumors with oxygen is thought to enhance radiation treatment.© GEORGE RETSECK

The rapid growth and high metabolic activity of a tumor can cause its cells to become hypoxic due to an insufficient blood supply. Somewhat counterintuitively, however, these sickly, oxygen-starved cells are actually harder to kill with radiation treatment than healthy tissue. Researchers are thus investigating ways to boost oxygen levels in tumors so the cells can be nuked more effectively.

One idea has been to inject tiny oxygen-filled bubbles into a patient’s bloodstream. The bubbles would then enter the tumor—where blood vessel walls tend to be leaky—and burst to locally release the oxygen, explains John Eisenbrey of Thomas Jefferson University in Philadelphia.

Such bubble-based treatment is not as strange as it might sound. Indeed, the ultrasound community has been using gas-filled microbubbles as a contrast ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies