Bursting Cancer’s Bubble

Scientists make oxygen-filled microbubbles designed to increase tumor sensitivity to radiation.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

TINY BUBBLES: Oxygen-filled bubbles—3 μm in diameter—are delivered to a tumor via blood vessels. Sonication at the site of the tumor causes the bubbles to explode, releasing oxygen. Enriching tumors with oxygen is thought to enhance radiation treatment.© GEORGE RETSECK

The rapid growth and high metabolic activity of a tumor can cause its cells to become hypoxic due to an insufficient blood supply. Somewhat counterintuitively, however, these sickly, oxygen-starved cells are actually harder to kill with radiation treatment than healthy tissue. Researchers are thus investigating ways to boost oxygen levels in tumors so the cells can be nuked more effectively.

One idea has been to inject tiny oxygen-filled bubbles into a patient’s bloodstream. The bubbles would then enter the tumor—where blood vessel walls tend to be leaky—and burst to locally release the oxygen, explains John Eisenbrey of Thomas Jefferson University in Philadelphia.

Such bubble-based treatment is not as strange as it might sound. Indeed, the ultrasound community has been using gas-filled microbubbles as a contrast ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH