Cancer Cells Could Travel Through the Interstitium: Study

The continuous network of fluid-filled compartments crosses organ barriers and might serve as a conduit for tumor cells to spread.

marcus a. banks
| 3 min read
interstitium interstitial space cancer macrophage human anatomy

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The human body houses a continuous network of fluid-filled compartments between cells that spans organs and is perhaps involved in disease spread, according to research published on March 31 in Communications Biology.

In 2018, the same research team demonstrated the existence of these fluid-filled spaces, which they dubbed the interstitium, challenging conventional wisdom that the space between cells is dense connective tissue. The use of fixed tissues under microscopes had inspired this error, as the fixation process drains the samples of fluids.

While that first paper was provocative—some anatomists pushed back against the authors framing their discovery as a new organ—it did not settle the question of whether the interstitium remains within the cells of discrete organs or crosses between different organs. The authors now say the latter is true, and that the interstitium could act as a conduit for cancers and other diseases to travel throughout the body, in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • marcus a. banks

    Marcus A. Banks

    Marcus is a science and health journalist based in New York City. He graduated from the Science Health and Environmental Reporting Program at New York University in 2019, and earned a master’s in Library and Information Science from Dominican University in 2002. He’s written for Slate, Undark, Spectrum, and Cancer Today.

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio 
Zymo Research

Zymo Research Launches Microbiome Grant to Support Innovation in Microbial Sciences