Cancer Diet Shared by Healthy Cells

Tumor cells rapidly divide by usurping a metabolic trick from normal cell development.

Written byBeth Marie Mole
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, REYTANTo fuel runaway tumor growth, cancer cells use a metabolic mechanism, called glycolysis, that normal cells were believed to only use in the absence of oxygen. But according to a study released today (January 23) in Cancer & Metabolism, certain progenitor cells use glycolysis to power rapid growth during early tissue development, even when oxygen is readily available—suggesting that tumors arise out of the normal metabolic processes for tissue growth.

“They demonstrate nicely that [aerobic glycolysis] is required in normal development,” said cancer genetics researcher Chi Van Dang, director of University of Pennsylvania’s Abramson Cancer Center, who was not involved in the study. Moreover, he adds, the study highlights the importance of tightly regulated metabolism and cell growth—whether to spur early tissue development or unbridled tumor development. Before this study, “the prevailing viewpoint was that metabolism was just along for the ride.” (Read an in-depth discussion of the role of metabolism in complex diseases in The Scientist’s 2011 feature, “Power Failure.”)

Unlike the controlled diet of normal cells that make energy from pyruvate in the presence of oxygen, cancer cells gobble up glucose and convert it to lactic acid. Why and how tumors utilize this ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies