Cancer Growth Curtailed

Researchers develop two small molecules that slow the growth of human cancer cells.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, RAMAA rogue enzyme that causes a number of different human cancers can be stopped in its tracks by two newly discovered small molecules, according to papers published today (April 4) in Science. The molecules bound mutant forms of the enzyme, preventing their aberrant behavior and slowing cancer cell growth in culture. The researchers suggest a similar approach might soon be feasible in patients.

“This is another important step in what so far has been a truly a fascinating story that I hope will ultimately end with a compound that works in the clinic,” said Kenneth Kinzler, a professor of oncology at The Johns Hopkins University in Baltimore, Maryland, who did not participate in the research.

The story to which Kinzler referred is that of isocitrate dehydrogenase (IDH), an enzyme involved in cell metabolism that was recently found to be mutated in a variety of different cancers, including leukemia and glioma, or brain tumor.

IDH is an unusual oncogene, Kinzler said. While most oncogenes simply increase or decrease their activity when mutated, the mutations to IDH give the enzyme an entirely novel function. Using the analogy of a car, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH