Cancer More Diverse than Its Genetics

Tumor cells can exhibit different behaviors despite being genetically indistinguishable.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WikimediaRamaOne reason certain tumors can be hard to eliminate is that they contain a variety of different cells. This inherent heterogeneity was thought to be driven largely by the cells’ high mutation rates, but a report published in Science today (December 13) adds to growing evidence that non-genetic factors are also responsible.

“The take home message is, yes, it is important to know . . . what the genetic heterogeneity [of cancer] is, but heterogeneity among genetically-stable [cell lineages] is a factor that you also have to consider,” said Stephen Baylin, professor of oncology at The Johns Hopkins University School of Medicine, in Baltimore, who was not involved in the study.

Cancer cells, by their very nature, tend to be genetically unstable. And it is thought that this instability leads to the generation of tumor cell populations, also known as subclones, that possess different mutations and behaviors. Indeed, genetic differences have been shown to affect the growth rate, metastatic potential, and tumorigenicity of individual subclones, as well as their response to therapy.

Of all these behaviors, tumorogenicity—the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo