Cancer More Diverse than Its Genetics

Tumor cells can exhibit different behaviors despite being genetically indistinguishable.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WikimediaRamaOne reason certain tumors can be hard to eliminate is that they contain a variety of different cells. This inherent heterogeneity was thought to be driven largely by the cells’ high mutation rates, but a report published in Science today (December 13) adds to growing evidence that non-genetic factors are also responsible.

“The take home message is, yes, it is important to know . . . what the genetic heterogeneity [of cancer] is, but heterogeneity among genetically-stable [cell lineages] is a factor that you also have to consider,” said Stephen Baylin, professor of oncology at The Johns Hopkins University School of Medicine, in Baltimore, who was not involved in the study.

Cancer cells, by their very nature, tend to be genetically unstable. And it is thought that this instability leads to the generation of tumor cell populations, also known as subclones, that possess different mutations and behaviors. Indeed, genetic differences have been shown to affect the growth rate, metastatic potential, and tumorigenicity of individual subclones, as well as their response to therapy.

Of all these behaviors, tumorogenicity—the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development