Cancer Researchers Use Evolution to Target Drug Resistance

New therapeutic approaches in oncology aim to manipulate or block cancer’s adaptation to treatment.

Written byCatherine Offord
| 20 min read

Register for free to listen to this article
Listen with Speechify
0:00
20:00
Share

ABOVE: © Lucy Reading-IkKanda

In the early 2000s, back when biologist Olivia Rossanese worked as an investigator at GlaxoSmithKline, fighting cancer was an exercise in brute force. Researchers at the company had set their sights on developing inhibitors of B-Raf, a protein kinase involved in cell signaling that becomes dysfunctional in many cancers, and “what we were thinking was that we needed to hit this . . . protein so hard,” says Rossanese. “You had to inhibit it 99.999 percent to shut down the signaling pathway.”

In 2008, Rossanese and her GSK colleagues discovered just the sort of compound they were after: a small molecule, dabrafenib, that potently inhibited B-Raf and showed striking effects in melanoma patients with certain mutations in the BRAF gene. With dabrafenib, says Rossanese, “we see really amazing responses, and melanomas go away.” The drug was approved by the US Food and Drug Administration (FDA) in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

April 2020

Exercise for Cancer

Molecular clues link physical activity to improved patient outcomes

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies