Cas9 Proofreads Gene Edits

The gene-editing CRISPR/Cas9 system has three checkpoints to ensure it alters the right section of DNA.

Written byKaren Zusi
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

FLICKR, CAROLINE DAVISCRISPR/Cas9, now widely used as a precise way to edit DNA, involves the Cas9 protein locating pre-programmed sequences of base pairs before slicing and dicing the genome. Two recent reports, one published in Nature (October 28) and the other in Science (November 12), unveil details about how Cas9 ensures it targets the right sequences.

In the Science paper, CRISPR pioneer Jennifer Doudna from the University of California, Berkley, and her colleagues explored how the Cas9 protein searches for a single pattern of base pairs in an entire genome. Cas9 operates in conjunction with an RNA, programmed to guide Cas9 to a specific 20-nucleotide section of DNA. “It’s crazy that the Cas9 complex manages to scan the vast space of eukaryotic genomes,” study coauthor Spencer Knight of Berkeley said in a press release.

The team visualized Cas9’s binding patterns with single-particle tracking, finding that once the protein recognizes a primer sequence in the DNA, it will bind to incorrect areas that look like its actual target—but Cas9 tends to disengage from these mistakes in less than a second. These steps ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH