Cell Death Processes Are Reversible

Molecular programs can rescue cells already engaged in the process of apoptosis or other forms of programmed cell death.

| 14 min read

Register for free to listen to this article
Listen with Speechify
0:00
14:00
Share

ABOVE: © shutterstock.com, Kateryna Kon

In 2007, Ho Man “Holly” Tang took a break from her undergraduate biology studies at Iowa State University to join her older brother, Ho Lam “Hogan” Tang, then a doctoral student at the Chinese University of Hong Kong, to work on a project together. In Ming-Chiu Fung’s immunology lab, Hogan had been investigating how disturbances in the cytoskeletons of cells might contribute to the fragmentation of mitochondria during apoptosis, the most familiar form of cell suicide. But the siblings had a more fundamental question: Can cells recover from the cellular chaos that ensues once apoptosis is initiated?

There are many different triggers of apoptosis, but they all ultimately activate executioners called caspases. Cleaving hundreds of different kinds of proteins within a cell, these enzymes wreak havoc on the genome, attack structural proteins composing the cell’s organelles, and dismantle the cytoskeleton, leading cells to shrink, bleb, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Charles Q. Choi

    This person does not yet have a bio.

Published In

February 2019 Issue
February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo