Cell Death Processes Are Reversible

Molecular programs can rescue cells already engaged in the process of apoptosis or other forms of programmed cell death.

| 14 min read

Register for free to listen to this article
Listen with Speechify
0:00
14:00
Share

ABOVE: © shutterstock.com, Kateryna Kon

In 2007, Ho Man “Holly” Tang took a break from her undergraduate biology studies at Iowa State University to join her older brother, Ho Lam “Hogan” Tang, then a doctoral student at the Chinese University of Hong Kong, to work on a project together. In Ming-Chiu Fung’s immunology lab, Hogan had been investigating how disturbances in the cytoskeletons of cells might contribute to the fragmentation of mitochondria during apoptosis, the most familiar form of cell suicide. But the siblings had a more fundamental question: Can cells recover from the cellular chaos that ensues once apoptosis is initiated?

There are many different triggers of apoptosis, but they all ultimately activate executioners called caspases. Cleaving hundreds of different kinds of proteins within a cell, these enzymes wreak havoc on the genome, attack structural proteins composing the cell’s organelles, and dismantle the cytoskeleton, leading cells to shrink, bleb, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Charles Q. Choi

    This person does not yet have a bio.

Published In

February 2019 Issue
February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio