Chemogenetics Doesn’t Work Like Many Thought

A study finds the so-called DREADD method of manipulating neurons using a drug called CNO actually works via clozapine.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Transgenic mouse brain tissueMIKE MICHAELIDES, NIDAA popular chemogenetic technique for controlling cells does not operate in vivo in the way scientists had assumed. Reporting in Science yesterday (August 3), researchers show that CNO, a drug used in the DREADDs method (designer receptors exclusively activated by designer drugs), is not actually responsible for the effects scientists observe. Rather, it’s clozapine, a metabolite of CNO with numerous cellular targets, that binds the receptors.

These results make it imperative for researchers to do proper controls with clozapine, and indicate that they should change their protocols altogether. “I’m glad I don’t own stock in CNO,” says Scott Sternson, a neuroscientist at the Janelia Research Campus. “There’s no reason to use CNO anymore.”

Although it may be the end of CNO in these studies, coauthor Mike Michaelides of the National Institute on Drug Abuse tells The Scientist the results don’t necessarily mean the end of DREADDs. In fact, his findings might simplify things. Rather than using CNO, researchers can just administer clozapine instead because it’s the real actuator of the technique. “If they use proper controls, then hopefully it should be fine,” he says.

Clozapine was our positive control. . . ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control