Chromatin Conformation Computed

By manipulating DNA sequences that guide genome-folding, researchers confirm an existing model of chromatin structure inside the nucleus.

head shot of blond woman wearing glasses
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Two chromatin loops (magenta and blue) held together by a CTCF-containing protein complex (yellow)ADRIAN SANBORN, NAJEEB TARAZI, EREZ LIEBERMAN AIDEN, BAYLOR COLLEGE OF MEDICINE

Compared to its sequence, relatively little is known about the structure of the human genome, which enables more than two meters of chromatin to fit inside the nucleus. Chromosomes are thought to be organized into loops that bring together distant DNA elements—genes, promoters, and enhancers. These chromatin loops are thought to help facilitate gene regulation.

Now, researchers at the Baylor College of Medicine’s Center for Genome Architecture in Houston, Texas, have developed a mathematical model using the binding pattern of a single protein to DNA to predict the looping organization of the human genome. The model helped the team predict the results of its CRISPR-based experimental modification of some of these protein-binding sites in human cells. The team’s results, published this week (October 19) in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky

    Anna Azvolinsky is a freelance science writer based in New York City.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad
Takara Bio

Takara Bio USA Holdings, Inc. announces the acquisition of Curio Bioscience, adding spatial biology to its broad portfolio of single-cell omics solutions

Sapio Sciences

Sapio Sciences Announces Enhanced Capabilities for Chemistry, Immunogenicity, GMP and Molecular Biology

Biotium Logo

Biotium Unveils the Most Sensitive Stains for DNA or RNA with New EMBER™ Ultra Agarose Gel Kits