Chromatin Conformation Computed

By manipulating DNA sequences that guide genome-folding, researchers confirm an existing model of chromatin structure inside the nucleus.

Written byAnna Azvolinsky
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Two chromatin loops (magenta and blue) held together by a CTCF-containing protein complex (yellow)ADRIAN SANBORN, NAJEEB TARAZI, EREZ LIEBERMAN AIDEN, BAYLOR COLLEGE OF MEDICINE

Compared to its sequence, relatively little is known about the structure of the human genome, which enables more than two meters of chromatin to fit inside the nucleus. Chromosomes are thought to be organized into loops that bring together distant DNA elements—genes, promoters, and enhancers. These chromatin loops are thought to help facilitate gene regulation.

Now, researchers at the Baylor College of Medicine’s Center for Genome Architecture in Houston, Texas, have developed a mathematical model using the binding pattern of a single protein to DNA to predict the looping organization of the human genome. The model helped the team predict the results of its CRISPR-based experimental modification of some of these protein-binding sites in human cells. The team’s results, published this week (October 19) in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies