Chromatin Conformation Computed

By manipulating DNA sequences that guide genome-folding, researchers confirm an existing model of chromatin structure inside the nucleus.

head shot of blond woman wearing glasses
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Two chromatin loops (magenta and blue) held together by a CTCF-containing protein complex (yellow)ADRIAN SANBORN, NAJEEB TARAZI, EREZ LIEBERMAN AIDEN, BAYLOR COLLEGE OF MEDICINE

Compared to its sequence, relatively little is known about the structure of the human genome, which enables more than two meters of chromatin to fit inside the nucleus. Chromosomes are thought to be organized into loops that bring together distant DNA elements—genes, promoters, and enhancers. These chromatin loops are thought to help facilitate gene regulation.

Now, researchers at the Baylor College of Medicine’s Center for Genome Architecture in Houston, Texas, have developed a mathematical model using the binding pattern of a single protein to DNA to predict the looping organization of the human genome. The model helped the team predict the results of its CRISPR-based experimental modification of some of these protein-binding sites in human cells. The team’s results, published this week (October 19) in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky

    Anna Azvolinsky is a freelance science writer based in New York City.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo