Circadian Clock Transplant

Scientists establish a functional circadian rhythm in bacteria that don’t possess one naturally.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, NIAIDCircadian clock machinery from cyanobacteria has been successfully reconstructed inside Escherichia coli bacteria, which do not have a natural day-night cycle, according to a paper published today (June 12) in Science Advances. The E. coli cells exhibited 24-hour-long repeating oscillations in both transcription of a reporter gene and phosphorylation of a key clock protein. The results serve as a proof of principle that engineering such a synthetic circadian circuit is possible.

“The exciting thing is that this is really the first step towards using this wonderful protein clock in synthetic biology to actually do something, or produce something,” said circadian biologist Susan Golden of the University of California, San Diego, who was not involved in the work.

The project was borne out of a general interest in engineering cells that can measure time, explained study coauthor Pam Silver of Harvard Medical School. “It was really a ‘Gee, will it work?’ kind of experiment . . . just pure curiosity,” she said.

But beyond mere tinkering, the potential applications for engineered cells that exhibit diurnal rhythms are many. For instance, synthetic organisms could be designed to produce and secrete drugs at a certain time each day. Industrial ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours