Circular Chromosomes Straightened

A newly described method linearizes circular chromosomes in yeast and caps them with telomeres to mimic natural chromosomes.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, AJ CANNSynthetic biologists often work with circular chromosomes to engineer genetic material because they’re stable and easy to manipulate, but they don’t resemble the natural shape of chromosomes in eukaryotes. Reporting in PNAS this week (November 5), Jef Boeke of NYU Langone Medical Center and postdoc Leslie Mitchell designed a tool, which they dubbed the telomerator, that straightens circular yeast chromosomes and adds telomeres to either end.

“To convert circular DNA to something more akin to a natural chromosome is appealing,” said Timothy Lu, a synthetic biologist at MIT who was not involved in the study. Lu said the telomerator could help advance a number of goals, from designing artificial chromosomes that encode complex pathways to testing the significance of telomere location in the genome. “It’s really a platform technology for downstream applications.”

The telomerator includes an endonuclease target—the site where the DNA loop will be severed—flanked by telomere seed sequences that form the basis of telomere construction. The telomerator is inserted into a gene of interest in the circular chromosomes, and when an endonuclease cuts the sequence at the recognition site, each exposed end carries a seed sequence on which to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel