Climate Change Could Drive Sharks to Fishing Grounds: Study

Blue sharks don't dive as deeply in low-oxygen waters—which become more prevalent as oceans warm—effectively pushing them into areas of high fishing pressure.

asher jones
| 5 min read
sharks, blue shark, Prionace glauca, overfishing, ocean deoxygenation, climate change

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: A blue shark (Prionace glauca)
KEITH HISCOCK

The oceans are losing their oxygen. Warmer waters and excess nutrients from human activities have led to a 2 percent decline in the seas’ oxygen levels since the 1960s—and its taking a toll on marine life. In a study published January 19 in eLife, researchers find that blue sharks (Prionace glauca) dont dive as deeply in low-oxygen areas, a behavior that could leave them more vulnerable to fishing.

“I think [the study] is important for a couple of reasons. It draws attention to the problem of ocean deoxygenation, which isn’t very widely known, and it draws attention to sharks, which people don’t often think about as being vulnerable to climate change,” says Lisa Levin, a biological oceanographer at the Scripps Institution of Oceanography who was not involved in the study. “It brings together changes in distributions of [sharks] with the consequences of fishing ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • asher jones

    Asher Jones

    Asher is a former editorial intern at The Scientist. She completed a PhD in entomology from Penn State University, and she was a 2020 AAAS Mass Media Fellow at Voice of America. You can find more of her work here.

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio