Climate Change Research Gets Closer to Nature

Researchers devise more-realistic means of forecasting the effects of climate change on complex marine ecosystems.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Increasing levels of atmospheric carbon dioxide are thought to be acidifying and warming Earth’s oceans, causing significant changes to marine and terrestrial ecosystems around the world. But many forecasts of future changes to ecosystems have been based on simplified laboratory experiments that include few or even just a single species.

“Looking at individual organisms gives you a very isolated if not distorted picture, so to really understand how communities are responding to global change, you need to go to community-level experimentation,” says biological oceanographer Ulf Riebesell of GEOMAR Helmholtz Centre for Ocean Research in Kiel, Germany.

Riebesell and marine ecologist Ivan Nagelkerken of the University of Adelaide in Australia are among the researchers now employing mesocosm experiments—a method that straddles the divide between field- and laboratory-based approaches to allow the study of naturalistic environments under controlled conditions.

While mesocosms themselves are not a novel concept, says Nagelkerken, “they have hardly ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.

Published In

Climate Change
July 2018

Climate Change

Which species are most vulnerable?

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo