Clues to How Ancient Plants Handled Fungal Pests

In plants ranging from liverworts to wheat, parasitic water molds build intracellular structures analogous to the nutrient-exchanging structures of symbiotic fungi.

| 4 min read
notebook

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: This microscopy image shows a cross section of a liverwort infected with an oomycete pathogen (red).
PHILIP CARELLA

When Sebastian Schornack started his group in the Sainsbury Laboratory at the University of Cambridge in 2013, he was intrigued by the parallels between certain plant pathogens and the beneficial microorganisms that help plants extract nutrients from the soil. Symbiotic mycorrhizal fungi, for example, send branched structures called arbuscules into the host plant’s cells to trade water and minerals for carbohydrates such as sucrose. In a similar fashion, filamentous fungal and water mold pathogens extend finger-like haustoria into plant cells—but in this case, to help the invaders sap nutrients for their own reproduction.

In both scenarios, plants actively accommodate invasion by building a membrane around the structure projecting into the plant cell, and transporting materials to and from that interface. It seemed to Schornack that there were some basic “rules of engagement” ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.

Published In

February 2019 Issue
February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad
Takara Bio

Takara Bio USA Holdings, Inc. announces the acquisition of Curio Bioscience, adding spatial biology to its broad portfolio of single-cell omics solutions

Sapio Sciences

Sapio Sciences Announces Enhanced Capabilities for Chemistry, Immunogenicity, GMP and Molecular Biology

Biotium Logo

Biotium Unveils the Most Sensitive Stains for DNA or RNA with New EMBER™ Ultra Agarose Gel Kits