Conserved Chromatin?

Archaea packages DNA around histones in a similar way to eukaryotes, suggesting that fitting a large genome into a small space was not the original role of chromatin.

Written byEd Yong
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The Dead Sea, where Haloferax volcanii lives Wikimedia, Ian and Wendy SewellOur genetic material is packaged into chromatin—DNA wrapped around proteins called histones, then bound up in bundles called nucleosomes. This style of packaging has long been considered a hallmark of eukaryotes, a way of compressing our large genomes into manageable sizes and controlling the expression of our genes. But scientists from the University of Toronto have shown that archaea—a separate domain of life—also wrap their genomes around histones in a way that resembles eukaryotic chromatin.

“The conventional wisdom was that the purpose of chromatin was genome-packaging—fitting a 4-meter stretch of DNA into a 5-micrometer nucleus,” said the University of Toronto’s Corey Nislow, who led the new study. But archaea do not have a nucleus, and their small circular genomes are easier to package inside their cells. “If the primary role for chromatin is not packaging, it might instead be to regulate gene expression,” Nislow said.

There are two types of archaeal histones, which collectively form bundles of four and protect around 60 base pairs of DNA. By contrast, eukaryotes have four histone types that assemble into clumps of eight and protect around 147 base pairs. “[Our knowledge of these archaeal histones] is analogous to the state of the eukaryotic histone ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies