Conserved Chromatin?

Archaea packages DNA around histones in a similar way to eukaryotes, suggesting that fitting a large genome into a small space was not the original role of chromatin.

Written byEd Yong
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The Dead Sea, where Haloferax volcanii lives Wikimedia, Ian and Wendy SewellOur genetic material is packaged into chromatin—DNA wrapped around proteins called histones, then bound up in bundles called nucleosomes. This style of packaging has long been considered a hallmark of eukaryotes, a way of compressing our large genomes into manageable sizes and controlling the expression of our genes. But scientists from the University of Toronto have shown that archaea—a separate domain of life—also wrap their genomes around histones in a way that resembles eukaryotic chromatin.

“The conventional wisdom was that the purpose of chromatin was genome-packaging—fitting a 4-meter stretch of DNA into a 5-micrometer nucleus,” said the University of Toronto’s Corey Nislow, who led the new study. But archaea do not have a nucleus, and their small circular genomes are easier to package inside their cells. “If the primary role for chromatin is not packaging, it might instead be to regulate gene expression,” Nislow said.

There are two types of archaeal histones, which collectively form bundles of four and protect around 60 base pairs of DNA. By contrast, eukaryotes have four histone types that assemble into clumps of eight and protect around 147 base pairs. “[Our knowledge of these archaeal histones] is analogous to the state of the eukaryotic histone ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH