Crack Control

Nanoscale cracks in bone dissipate energy to protect against fracture, a process that appears to be regulated by the interaction of two proteins.

Written byDan Cossins
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

BREAKING BONDS: In unstressed bone, two interacting proteins—osteocalcin and osteopontin—connect clumps of mineral that are in turn fused to collagen fibrils (1). In a bone sample subjected to bending, scores of 100-nanometer-wide elliptical voids appear in the region where tension occurs. The researchers propose that dilatational bands form when the two proteins are pulled apart (2). If the force subsides, the bonds can reform, the nanoscale voids are repaired, and no further damage is done. But if the force continues, bonds between the two proteins break and collagen fibrils are sheared, leading to submicroscopic cracks; a collection of which makes up what is referred to as diffuse damage (3). LUCY READING-IKKANDA

The paper
A.A. Poundarik et al., “Dilatational band formation in bone,” PNAS, 109:19178-83, 2012.

Bone is tough, thanks largely to its complex hierarchical structure. At multiple levels, its constituent materials are arranged in patterns that resist crack propagation. Such mechanisms are well studied at the micrometer scale, but little is known at the nanometer scale about how cracks start, and how further damage is limited.

Deepak Vashishth of Rensselaer Polytechnic Institute in Troy, New York, and colleagues approached the problem by bending small sections of human tibia to its uppermost physiological limits and then using scanning electron and atomic force microscopy to look at the resulting damage. After staining to locate areas of diffuse damage at the microscale, then zooming in to the nanoscale, the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies