Crack Control

Nanoscale cracks in bone dissipate energy to protect against fracture, a process that appears to be regulated by the interaction of two proteins.

Written byDan Cossins
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

BREAKING BONDS: In unstressed bone, two interacting proteins—osteocalcin and osteopontin—connect clumps of mineral that are in turn fused to collagen fibrils (1). In a bone sample subjected to bending, scores of 100-nanometer-wide elliptical voids appear in the region where tension occurs. The researchers propose that dilatational bands form when the two proteins are pulled apart (2). If the force subsides, the bonds can reform, the nanoscale voids are repaired, and no further damage is done. But if the force continues, bonds between the two proteins break and collagen fibrils are sheared, leading to submicroscopic cracks; a collection of which makes up what is referred to as diffuse damage (3). LUCY READING-IKKANDA

The paper
A.A. Poundarik et al., “Dilatational band formation in bone,” PNAS, 109:19178-83, 2012.

Bone is tough, thanks largely to its complex hierarchical structure. At multiple levels, its constituent materials are arranged in patterns that resist crack propagation. Such mechanisms are well studied at the micrometer scale, but little is known at the nanometer scale about how cracks start, and how further damage is limited.

Deepak Vashishth of Rensselaer Polytechnic Institute in Troy, New York, and colleagues approached the problem by bending small sections of human tibia to its uppermost physiological limits and then using scanning electron and atomic force microscopy to look at the resulting damage. After staining to locate areas of diffuse damage at the microscale, then zooming in to the nanoscale, the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel