CRISPR Corrects Blood Disorder Gene

Scientists use the genome-editing technique to fix a disease-causing mutation in human cell lines.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, DCRJSRThe genome-editing method involving CRISPR and Cas9 has been called into duty for a wide variety of jobs, from cutting integrated HIV out of the human genome to turning off genes in primates. In a new development published today (August 5) in Genome Research, researchers have used CRISPR/Cas9 in human cell lines to rewrite a mutant gene that causes a blood disorder called β-thalassemia.

“It is an incremental step forward to use genome editing to correct disease-causing mutations,” said Paul Schmidt from Children’s Hospital Boston and Harvard Medical School who did not participate in the study. Still, he added, there are a number of hurdles that “need to be overcome before it can be used in the clinic.”

β-thalassemia is caused by a mutation in the HBB gene, resulting in a severe hemoglobin deficiency. It’s estimated to affect one in 100,000 people globally, including one in 10,000 in Europe. Patients require transfusions that can overload them with iron, a complication that also requires treatment. Some researchers are working to develop a gene therapy for the problematic gene, but so far there is no cure.

Yuet Kan of the University ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies