CRISPR May Prove Useful in De-Extinction Efforts

Researchers are using the powerful gene-editing tool to recreate the woolly mammoth.

Written byBritt Wray
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

GREYSTONE BOOKS, OCTOBER 2017There may come a day when woolly mammoth–like proxies with imposing curled tusks and that iconic, shaggy mane will traipse again through their ancestral stomping grounds in the Siberian tundra. The woolly mammoth went extinct after the last holdouts on Wrangle Island, off the northern coast of far eastern Siberia, died off between 3,600 and 4,000 years ago. For now, however, the promise of this futuristic vision lives in labs at Harvard Medical School—and the cells in petri dishes are a long way off from assembling into a complete animal. Researchers are nowhere close to recreating fully formed mammoths, and, thus far, scientific efforts to resurrect the extinct beasts have been rather incremental. But that hasn’t kept Harvard Medical School researcher George Church from predicting that he and his colleagues, who collaborate on a de-extinction project known as the Woolly Mammoth Revival, will create a hybrid woolly mammoth-Asian elephant embryo as early as 2019. And CRISPR-Cas9, a gene-editing technology that Church’s lab played a role in developing, may be the key to speeding the eventual return of the ancient animal.

I explore this and other tales of de-extinction in my book, Rise of the Necrofauna.

Bobby Dhadwar, a postdoctoral researcher in Church’s lab, has been laying some of the groundwork for creating the engineered embryos. Since the project’s early days, he has been involved in editing “background cell types” in order to test the effects certain woolly mammoth–specific genetic changes have on available cells that most resemble those of a mammoth: Asian elephant cells.

To start, Dhadwar and his colleagues identified traits that people normally attribute to the woolly mammoth, but that are missing in Asian elephants. These include an abundance of reddish-brown hair and a form of oxygen- binding hemoglobin that functions well at low temperatures. In their early experiments, the researchers went hunting ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

September 2017

Healing with Hallucinogens

The therapeutic benefits of psychedelic drugs

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel