CRISPR May Prove Useful in De-Extinction Efforts

Researchers are using the powerful gene-editing tool to recreate the woolly mammoth.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

GREYSTONE BOOKS, OCTOBER 2017There may come a day when woolly mammoth–like proxies with imposing curled tusks and that iconic, shaggy mane will traipse again through their ancestral stomping grounds in the Siberian tundra. The woolly mammoth went extinct after the last holdouts on Wrangle Island, off the northern coast of far eastern Siberia, died off between 3,600 and 4,000 years ago. For now, however, the promise of this futuristic vision lives in labs at Harvard Medical School—and the cells in petri dishes are a long way off from assembling into a complete animal. Researchers are nowhere close to recreating fully formed mammoths, and, thus far, scientific efforts to resurrect the extinct beasts have been rather incremental. But that hasn’t kept Harvard Medical School researcher George Church from predicting that he and his colleagues, who collaborate on a de-extinction project known as the Woolly Mammoth Revival, will create a hybrid woolly mammoth-Asian elephant embryo as early as 2019. And CRISPR-Cas9, a gene-editing technology that Church’s lab played a role in developing, may be the key to speeding the eventual return of the ancient animal.

I explore this and other tales of de-extinction in my book, Rise of the Necrofauna.

Bobby Dhadwar, a postdoctoral researcher in Church’s lab, has been laying some of the groundwork for creating the engineered embryos. Since the project’s early days, he has been involved in editing “background cell types” in order to test the effects certain woolly mammoth–specific genetic changes have on available cells that most resemble those of a mammoth: Asian elephant cells.

To start, Dhadwar and his colleagues identified traits that people normally attribute to the woolly mammoth, but that are missing in Asian elephants. These include an abundance of reddish-brown hair and a form of oxygen- binding hemoglobin that functions well at low temperatures. In their early experiments, the researchers went hunting ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Britt Wray

    This person does not yet have a bio.

Published In

September 2017

Healing with Hallucinogens

The therapeutic benefits of psychedelic drugs

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide