Deconstructing the Mosaic Brain

Sequencing the DNA of individual neurons is a way to dissect the genes underlying major neurological and psychological disorders.

Written byTom Curran
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

THE MOSAIC BRAIN During development neural stem cells generate committed precursor cells that differentiate into the many specialized neural populations that comprise the adult brain. Mutations can arise at any step in the series of >100 billion cell divisions required to generate the number of neurons found in the fully developed brain, resulting in variably sized populations of neurons that share a unique somatogenetic inheritance. Chances are high that an individual who inherits a recessive mutation in a critical gene will have some subset of neurons in which the same gene is also mutated. This may represent an entire brain structure (e.g., cerebellum), smaller regional structures, or even scattered populations of neurons that migrate throughout the brain after neurogenesis. LUCY READING - IKKANDA

Cell division is a risky business. DNA damage unavoidably accompanies the enormous number of cell divisions required to generate the human body from a single fertilized egg. In most tissues, cell turnover and regeneration ameliorate the deleterious effects of somatic mutation. The nervous system, however, has a unique vulnerability—neurons generally don’t turn over. As a result, we are all cursed to live our entire lives with somatic mutations acquired during the embryonic development and differentiation of neural progenitor cells.

A conservative mutation rate of 5 x 10-7 mutations/cell/generation would mean that every adult human brain harbors around 5 x 104 somatic mutations in its neurons. Of course, the number of cells carrying each of these mutations depends on when the mutations arise during development, with ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel