Deep Brain Optogenetic Control Without Implants

Engineering an ultra-sensitive light-activated ion channel into brain cells allows for the control of neurons in live animals without a brain-implanted light source.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, WHITEHOUNE

Scientists have created a light-responsive opsin so sensitive that even when engineered into cells deep within tissue it can respond to an external light stimulus, according to a report in Neuron yesterday (April 30). Experiments in mice and macaques showed that shining blue light on the surface of the skull or brain was sufficient to activate opsin-expressing neurons six millimeters deep.

“I was pretty blown away that this was even possible,” says Gregory Corder, who studies the neurological basis of pain and addiction at the University of Pennsylvania and who was not involved with the work. At that sort of depth, he continues, “essentially no part of the rodent brain is off-limits now for doing this non-invasive [technique]. . . . It’s pretty impressive.”

“This development will help to extend the use of optogenetics in non-human primate models, and bring the techniques closer to clinical application ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio