Deep-Sea Viruses Destroy Archaea

Viruses are responsible for the majority of archaea deaths on the deep ocean floors, scientists show.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, LARS LENTZIn the microbial populations of deep-sea sediments, archaea suffer viral infections about twice as often as bacteria, despite the latter being more abundant, according to a study published in Science Advances today (October 12). Given the enormous scale of deep-sea ecosystems, the results indicate that archaea-virus relationships could be a major contributor to global biogeochemical cycles.

“[This] appears to be a careful and thorough study that has significant implications for microbial communities across all oceanic basins,” microbiologist Steven Wilhelm of the University of Tennessee, Knoxville, who was not involved in the work, wrote in an email to The Scientist. “[It] implies that certain microbial populations are much more susceptible to virus activity in these deep ocean regions,” he added.

Deep-sea ecosystems cover more than 65 percent of the world’s surface and comprise more than 90 percent of the global biosphere, but how they work is still somewhat of a mystery, said marine biologist and ecologist Roberto Danovaro of the Marche Polytechnic University in Ancona, Italy. One thing that is clear: just like in the rest of the world’s biosphere, viruses are ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH