Deep-Sea Viruses Destroy Archaea

Viruses are responsible for the majority of archaea deaths on the deep ocean floors, scientists show.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, LARS LENTZIn the microbial populations of deep-sea sediments, archaea suffer viral infections about twice as often as bacteria, despite the latter being more abundant, according to a study published in Science Advances today (October 12). Given the enormous scale of deep-sea ecosystems, the results indicate that archaea-virus relationships could be a major contributor to global biogeochemical cycles.

“[This] appears to be a careful and thorough study that has significant implications for microbial communities across all oceanic basins,” microbiologist Steven Wilhelm of the University of Tennessee, Knoxville, who was not involved in the work, wrote in an email to The Scientist. “[It] implies that certain microbial populations are much more susceptible to virus activity in these deep ocean regions,” he added.

Deep-sea ecosystems cover more than 65 percent of the world’s surface and comprise more than 90 percent of the global biosphere, but how they work is still somewhat of a mystery, said marine biologist and ecologist Roberto Danovaro of the Marche Polytechnic University in Ancona, Italy. One thing that is clear: just like in the rest of the world’s biosphere, viruses are ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo