Designer Livestock

New technologies will make it easier to manipulate animal genomes, but food products from genetically engineered animals face a long road to market.

| 13 min read

Register for free to listen to this article
Listen with Speechify
0:00
13:00
Share

© JOEL HOLLAND

In the mid-1990s, microbiologist Cecil Forsberg of the University of Guelph in Ontario and his colleagues thought they’d achieved a pig production breakthrough: they had genetically engineered swine that could digest the phosphorous compounds in their feed. Phytase, an enzyme that breaks down phosphorus-containing phytate in plants, is produced by the gut bacteria of cows and other ruminants, but it is not made by pigs. Forsberg’s team borrowed a phytase gene from E. coli and a fragment of mouse DNA that mediated the enzyme’s production in the salivary glands, injected the genetic construct into pig zygotes, then inserted those zygotes into fertile sows. “In the end, we had approximately 30 different lines of pigs,” Forsberg recalls. The researchers screened the animals for levels of phytase ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.

Published In

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

An illustration of different-shaped bacteria.

Leveraging PCR for Rapid Sterility Testing

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad