Developing Brains in Dishes

Two studies report methods to mimic human fetal brain development using neurons derived from human induced pluripotent stem cells that form 3-D, brain-like structures.

Written byAshley P. Taylor
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Fused human forebrain spheroids, iDISCO 3-D reconstructionPASCA LABScientists know little about the early development of the human brain. As a result, they also have limited data about how human brain development might relate to neuropsychiatric disorders, such as autism and schizophrenia. Since 2013, however, scientists having been studying the developing human brain using neurons derived from human induced pluripotent stem cells (iPSCs), which are cultured in three dimensions into pea-size structures that mimic the full organ. Two studies published today (April 26) in Nature advance these research methods. In one paper, Harvard’s Paula Arlotta and colleagues described the development of organoids, or “mini brains.” In the other, Stanford’s Sergiu Pasca and colleagues used neural spheroids—balls of tissue containing more than a million neurons each—to study the interactions of two brain regions crucial to the development of the cerebral cortex.

“The major conclusion is the confirmation/validation that the human pluripotent stem cells are plastic enough to generate the diversity of cells necessary to recreate human, early stages of neurodevelopment in a dish,” Alysson Muotri, who studies neurological diseases using iPSCs at University of California, San Diego, but was not involved in either study, told The Scientist in an email. “Every neuroscientist working with early brain development will be excited by reading these articles.”

Researchers hope to use brain organoids and spheroids to study neurodevelopment and neuropsychiatric disorders; these mini brains have already been used to study Zika virus infection–linked microcephaly and autism spectrum disorders.

Because many neuropsychiatric disorders are influenced by a person’s genetics, it is difficult to study these diseases in standard animal models. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH