Discovery’s Crest: A Profile of Marianne Bronner

Studying how neural crest cells journey through the embryo, this Caltech developmental biologist has revealed how they form major cell types, including peripheral neurons, bone, and smooth muscle.

Written byAnna Azvolinsky
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

When Marianne Bronner first learned about the neural crest—a group of cells that form early in embryonic development and give rise to most of the peripheral nervous system and facial skeleton—she had an epiphany. “I just knew that that is what I wanted to study,” she says. Prior to her personal revelation, Bronner struggled. “I didn’t know what I wanted to do with my life,” she says. She had earned a bachelor’s degree in biophysics from Brown University in 1975 and went to graduate school in the same field at Johns Hopkins University. “Since I had a degree in biophysics, I figured that I should go to graduate school in biophysics,” Bronner explains. But when she took a developmental biology course at Hopkins, she “fell in love.”

In that course, Bronner learned about Nicole Le Douarin’s pioneering work, starting in 1969, combining embryonic quail and chick cells to study their ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile

Published In

December 2018

Invisible Borders

An emerging appreciation for membraneless organelles and the liquid dynamics that shape them

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies