DNA Loop-the-Loops

A new full-genome map indicates how DNA is folded within the nuclei of human cells.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Physics simulation of 5 megabases of DNA forming loops and domainsADRIAN SANBORN, EREZ LIEBERMAN AIDEN Researchers have created the highest-resolution map to date of how the human genome folds within the nucleus, according to a study published today (December 11) in Cell. The work illuminates basic facts about the genome’s 3-D structure, including that it forms around 10,000 loops. It also sheds light on how genome structure influences gene expression, as looping DNA brings promoters and enhancers into close proximity. The work covers one mouse and eight human cell types.

“This is indeed a standard-setting paper,” said Bing Ren, a professor of cellular and molecular medicine at the University of California, San Diego, who was not involved in the study. “It's a landmark in the field of genome architecture.” Ren’s lab published its own 3-D map of genome structure last year, but according to Ren, this latest version has five to 10 times better resolution.

“This huge dataset will be used as a highly valuable resource for many researchers to mine and address all sorts of questions related to the functioning of our genome,” Wouter de Laat, who studies DNA architecture at the Hubrecht Institute in the Netherlands, wrote in an e-mail to The Scientist.

The work was led by Erez Lieberman Aiden, director of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Kate Yandell

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio