Physics simulation of 5 megabases of DNA forming loops and domainsADRIAN SANBORN, EREZ LIEBERMAN AIDEN Researchers have created the highest-resolution map to date of how the human genome folds within the nucleus, according to a study published today (December 11) in Cell. The work illuminates basic facts about the genome’s 3-D structure, including that it forms around 10,000 loops. It also sheds light on how genome structure influences gene expression, as looping DNA brings promoters and enhancers into close proximity. The work covers one mouse and eight human cell types.
“This is indeed a standard-setting paper,” said Bing Ren, a professor of cellular and molecular medicine at the University of California, San Diego, who was not involved in the study. “It's a landmark in the field of genome architecture.” Ren’s lab published its own 3-D map of genome structure last year, but according to Ren, this latest version has five to 10 times better resolution.
“This huge dataset will be used as a highly valuable resource for many researchers to mine and address all sorts of questions related to the functioning of our genome,” Wouter de Laat, who studies DNA architecture at the Hubrecht Institute in the Netherlands, wrote in an e-mail to The Scientist.
The work was led by Erez Lieberman Aiden, director of ...